]> git.armaanb.net Git - norepinephrine_wm.git/blobdiff - model.py
update
[norepinephrine_wm.git] / model.py
index db3c69156877bbc37b53828b891ed987b764cfdc..7feeee2be94f4f04b1bdade82760b5d2bc71710e 100644 (file)
--- a/model.py
+++ b/model.py
@@ -12,6 +12,7 @@ from tqdm import tqdm
 
 exec(open("conf.py").read())
 
+
 def fmt_num(num, width=18):
     """
     Format number to string.
@@ -44,7 +45,7 @@ def decision_function(x):
     elif value < 0.0:
         output = -1.0
     return output
-    #return 1.0 if x[0] + x[1] > 0.0 else -1.0
+    # return 1.0 if x[0] + x[1] > 0.0 else -1.0
 
 
 class Alpha():
@@ -60,8 +61,8 @@ class Alpha():
         self.biass = []
 
         for i in range(len(steps)):
-            self.gains.append(1 + self.gaind * self.y[i])
-            self.biass.append(1 + self.biasd * self.y[i])
+            self.gains.append(self.gaind * self.y[i] + 1)
+            self.biass.append(self.biasd * self.y[i] + 1)
 
     def plot(self):
         out = f"./out/{self.__class__.__name__}"
@@ -154,14 +155,14 @@ class Simulation():
         self.a1 = Alpha1()
         self.a2 = Alpha2()
         self.num_spikes = np.ones(len(steps))
-        self.biass = np.ones(len(steps))
-        self.gains = np.ones(len(steps))
         self.out = np.ones(3)
         self.trial = 0
 
-        self.perceived = np.ones(3)  # correctly perceived (not necessarily remembered) cues
-        rng=np.random.RandomState(seed=111)
-        self.cues=2 * rng.randint(2, size=3)-1  # whether the cues is on the left or right
+        # correctly perceived (not necessarily remembered) cues
+        self.perceived = np.ones(3)
+        rng = np.random.RandomState(seed=seed)
+        # whether the cues is on the left or right
+        self.cues = 2 * rng.randint(2, size=3)-1
         for n in range(len(self.perceived)):
             if rng.rand() < misperceive:
                 self.perceived[n] = 0
@@ -172,7 +173,7 @@ class Simulation():
         plt.figure()
         plt.plot(steps, self.num_spikes)
 
-        plt.xscale("log")
+        #plt.xscale("log")
 
         plt.xlabel("Norepinephrine concentration (nM)")
         plt.ylabel("Spiking rate (spikes/time step)")
@@ -188,6 +189,9 @@ class Simulation():
             return 0
 
     def run(self):
+        self.a1.plot()
+        self.a2.plot()
+
         with nengo.Network() as net:
             # Nodes
             cue_node = nengo.Node(output=self.cue_function)
@@ -217,30 +221,55 @@ class Simulation():
             nengo.Connection(decision, output, function=decision_function)
 
             # Probes
-            probes_wm = nengo.Probe(wm[0], synapse=0.01)
-            probe_spikes = nengo.Probe(wm.neurons)
-            probe_output = nengo.Probe(output, synapse=None)
+            probes_wm = nengo.Probe(wm[0], synapse=0.01, sample_every=probe_dt)
+            probe_spikes = nengo.Probe(wm.neurons, sample_every=probe_dt)
+            probe_output = nengo.Probe(
+                output, synapse=None, sample_every=probe_dt)
 
             # Run simulation
             with nengo.Simulator(net, dt=dt, progress_bar=False) as sim:
                 for i, _ in tqdm(enumerate(steps), total=len(steps)):
                     wm.gain = (self.a1.gains[i] + self.a2.gains[i]) * sim.data[wm].gain
-                    wm.bias = (self.a1.biass[i] + self.a2.biass[i]) * sim.data[wm].gain
+                    wm.bias = (self.a1.biass[i] + self.a2.biass[i]) * sim.data[wm].bias
+                    wm_recurrent.solver = MySolver(
+                        sim.model.params[wm_recurrent].weights)
+                    wm_to_decision.solver = MySolver(
+                        sim.model.params[wm_to_decision].weights)
+                    sim = nengo.Simulator(net, dt=dt, progress_bar=False)
                     for self.trial in range(3):
-                        logging.debug(f"Simulating: trial: {self.trial}, gain: {fmt_num(self.gains[i])}, bias: {fmt_num(self.biass[i])}")
+                        logging.info(
+                            f"Simulating: trial: {self.trial}, gain: {fmt_num(wm.gain)}, bias: {fmt_num(wm.bias)}")
                         sim.run(t_cue + t_delay)
-                        self.out[self.trial] = np.count_nonzero(sim.data[probe_spikes])
+                        self.out[self.trial] = np.count_nonzero(
+                            sim.data[probe_spikes])
                     self.num_spikes[i] = np.average(self.out)
 
         with open(f"out/{datetime.now().isoformat()}-spikes.pkl", "wb") as pout:
-            pickle.dump(self.num_spikes, pout)
+            pickle.dump(self, pout)
 
         self.plot()
 
+
+class MySolver(nengo.solvers.Solver):
+    def __init__(self, weights):
+        self.weights = False
+        self.my_weights = weights
+        self._paramdict = dict()
+
+    def __call__(self, A, Y, rng=None, E=None):
+        return self.my_weights.T, dict()
+
+
 def main():
     logging.info("Initializing simulation")
     plt.style.use("ggplot")  # Nice looking and familiar style
-    Simulation().run()
+
+    try:
+        data = open("simulation.pkl", "rb")
+    except FileNotFoundError:
+        Simulation().run()
+    else:
+        pickle.load(data).plot()
 
 
 if __name__ == "__main__":
@@ -250,6 +279,6 @@ if __name__ == "__main__":
         pass
 
     logging.basicConfig(filename=f"out/{datetime.now().isoformat()}.log",
-                        level=logging.DEBUG)
+                        level=logging.INFO)
 
     main()