]> git.armaanb.net Git - norepinephrine_wm.git/blobdiff - model.py
final update
[norepinephrine_wm.git] / model.py
index db3c69156877bbc37b53828b891ed987b764cfdc..ec89294142909c93a4ad2da27ed6ad8961a42661 100644 (file)
--- a/model.py
+++ b/model.py
@@ -12,6 +12,7 @@ from tqdm import tqdm
 
 exec(open("conf.py").read())
 
+
 def fmt_num(num, width=18):
     """
     Format number to string.
@@ -44,7 +45,7 @@ def decision_function(x):
     elif value < 0.0:
         output = -1.0
     return output
-    #return 1.0 if x[0] + x[1] > 0.0 else -1.0
+    # return 1.0 if x[0] + x[1] > 0.0 else -1.0
 
 
 class Alpha():
@@ -60,8 +61,8 @@ class Alpha():
         self.biass = []
 
         for i in range(len(steps)):
-            self.gains.append(1 + self.gaind * self.y[i])
-            self.biass.append(1 + self.biasd * self.y[i])
+            self.gains.append(self.gaind * self.y[i] + 1)
+            self.biass.append(self.biasd * self.y[i] + 1)
 
     def plot(self):
         out = f"./out/{self.__class__.__name__}"
@@ -90,35 +91,21 @@ class Alpha():
 
         #######################################################################
 
-        title = "Concentration vs Gain Scalar in" + self.pretty
-        logging.info("Plotting " + title)
-        plt.figure()
-        plt.plot(self.x, self.gains)
-
-        plt.xlabel("Norepinephrine concentration (nM)")
-        plt.ylabel("Gain")
-        plt.title(title)
-
-        plt.xscale("log")
-
-        plt.draw()
-        plt.savefig(f"{out}-concentration-gain.png")
-
-        #######################################################################
-
-        title = "Concentration vs Bias scalar in " + self.pretty
+        title = "Concentration vs Gain/Bias scalar in " + self.pretty
         logging.info("Plotting " + title)
         plt.figure()
-        plt.plot(self.x, self.biass)
+        plt.plot(self.x, self.biass, label="Bias scalar")
+        plt.plot(self.x, self.gains, label="Gain scalar")
 
         plt.xscale("log")
 
         plt.xlabel("Norepinephrine concentration (nM)")
-        plt.ylabel("Bias")
+        plt.ylabel("Level")
         plt.title(title)
+        plt.legend()
 
         plt.draw()
-        plt.savefig(f"{out}-concentration-bias.png")
+        plt.savefig(f"{out}-concentration-bias-gains.png")
 
 
 class Alpha1(Alpha):
@@ -129,9 +116,11 @@ class Alpha1(Alpha):
     def __init__(self):
         self.ki = 330
         self.offset = 5.895
-        self.pretty = "α1 Receptor"
-        self.gaind = -0.02
-        self.biasd = 0.04
+        self.pretty = "α1"
+        #self.gaind = -0.02
+        self.gaind = -0.1
+        #self.biasd = 0.04
+        self.biasd = 0.1
         super().__init__()
 
 
@@ -143,7 +132,7 @@ class Alpha2(Alpha):
     def __init__(self):
         self.ki = 56
         self.offset = 1
-        self.pretty = "α2 Receptor"
+        self.pretty = "α2"
         self.gaind = 0.1
         self.biasd = -0.1
         super().__init__()
@@ -152,16 +141,20 @@ class Alpha2(Alpha):
 class Simulation():
     def __init__(self):
         self.a1 = Alpha1()
+        self.a1.plot()
         self.a2 = Alpha2()
-        self.num_spikes = np.ones(len(steps))
-        self.biass = np.ones(len(steps))
-        self.gains = np.ones(len(steps))
-        self.out = np.ones(3)
+        self.a2.plot()
+
+        self.num_spikes = np.zeros(len(steps))
+        self.num_correct = np.zeros(len(steps))
+        self.out = np.zeros(n_trials)
         self.trial = 0
 
-        self.perceived = np.ones(3)  # correctly perceived (not necessarily remembered) cues
-        rng=np.random.RandomState(seed=111)
-        self.cues=2 * rng.randint(2, size=3)-1  # whether the cues is on the left or right
+        # correctly perceived (not necessarily remembered) cues
+        self.perceived = np.ones(n_trials)
+        rng = np.random.RandomState(seed=seed)
+        # whether the cues is on the left or right
+        self.cues = 2 * rng.randint(2, size=n_trials)-1
         for n in range(len(self.perceived)):
             if rng.rand() < misperceive:
                 self.perceived[n] = 0
@@ -172,8 +165,6 @@ class Simulation():
         plt.figure()
         plt.plot(steps, self.num_spikes)
 
-        plt.xscale("log")
-
         plt.xlabel("Norepinephrine concentration (nM)")
         plt.ylabel("Spiking rate (spikes/time step)")
         plt.title(title)
@@ -181,6 +172,21 @@ class Simulation():
         plt.draw()
         plt.savefig("./out/concentration-spiking.png")
 
+        ########################################################################
+
+        title = "Norepinephrine Concentration vs Accuracy"
+        logging.info("Plotting " + title)
+        plt.figure()
+        correct_df = pd.DataFrame(np.clip(self.num_correct, 0.5, 1.0)).rolling(20).mean()
+        plt.plot(steps, correct_df)
+
+        plt.xlabel("Norepinephrine concentration (nM)")
+        plt.ylabel("Accuracy")
+        plt.title(title)
+
+        plt.draw()
+        plt.savefig("./out/concentration-correct.png")
+
     def cue_function(self, t):
         if t < t_cue and self.perceived[self.trial] != 0:
             return cue_scale * self.cues[self.trial]
@@ -217,30 +223,67 @@ class Simulation():
             nengo.Connection(decision, output, function=decision_function)
 
             # Probes
-            probes_wm = nengo.Probe(wm[0], synapse=0.01)
-            probe_spikes = nengo.Probe(wm.neurons)
-            probe_output = nengo.Probe(output, synapse=None)
+            wm_probe = nengo.Probe(wm[0], synapse=0.01, sample_every=probe_dt)
+            spikes_probe = nengo.Probe(wm.neurons, sample_every=probe_dt)
+            output_probe = nengo.Probe(
+                output, synapse=None, sample_every=probe_dt)
 
             # Run simulation
-            with nengo.Simulator(net, dt=dt, progress_bar=False) as sim:
-                for i, _ in tqdm(enumerate(steps), total=len(steps)):
-                    wm.gain = (self.a1.gains[i] + self.a2.gains[i]) * sim.data[wm].gain
-                    wm.bias = (self.a1.biass[i] + self.a2.biass[i]) * sim.data[wm].gain
-                    for self.trial in range(3):
-                        logging.debug(f"Simulating: trial: {self.trial}, gain: {fmt_num(self.gains[i])}, bias: {fmt_num(self.biass[i])}")
-                        sim.run(t_cue + t_delay)
-                        self.out[self.trial] = np.count_nonzero(sim.data[probe_spikes])
-                    self.num_spikes[i] = np.average(self.out)
+            for i, _ in tqdm(enumerate(steps), total=len(steps), unit="step"):
+                sim = nengo.Simulator(net, dt=dt, progress_bar=False)
+                wm.gain = (self.a1.gains[i] + self.a2.gains[i]) * sim.data[wm].gain
+                wm.bias = (self.a1.biass[i] + self.a2.biass[i]) * sim.data[wm].bias
+                wm_recurrent.solver = MySolver(
+                    sim.model.params[wm_recurrent].weights)
+                wm_to_decision.solver = MySolver(
+                    sim.model.params[wm_to_decision].weights)
+                sim = nengo.Simulator(net, dt=dt, progress_bar=False)
+                for self.trial in range(n_trials):
+                    logging.info(
+                        f"Simulating: trial: {self.trial}, gain: {fmt_num(wm.gain)}, bias: {fmt_num(wm.bias)}")
+                    sim.run(t_cue + t_delay)
+
+                    # Firing rate
+                    self.out[self.trial] = np.count_nonzero(
+                        sim.data[spikes_probe])
+
+                    cue = self.cues[self.trial]
+                    # Correctness
+                    out = sim.data[output_probe][int(t_cue + t_delay)][0]
+                    if (out * cue) > 0:  # check if same sign
+                        self.num_correct[i] += np.abs(1 / (out - cue))
+
+                self.num_spikes[i] = np.average(self.out)
 
         with open(f"out/{datetime.now().isoformat()}-spikes.pkl", "wb") as pout:
-            pickle.dump(self.num_spikes, pout)
+            pickle.dump(self, pout)
 
         self.plot()
 
+def get_correct(cue, output_value):
+    return 1 if (cue > 0.0 and output_value > 0.0) or (cue < 0.0 and output_value < 0.0) else 0
+
+
+class MySolver(nengo.solvers.Solver):
+    def __init__(self, weights):
+        self.weights = False
+        self.my_weights = weights
+        self._paramdict = {}
+
+    def __call__(self, A, Y, rng=None, E=None):
+        return self.my_weights.T, dict()
+
+
 def main():
     logging.info("Initializing simulation")
     plt.style.use("ggplot")  # Nice looking and familiar style
-    Simulation().run()
+
+    try:
+        data = open("simulation.pkl", "rb")
+    except FileNotFoundError:
+        Simulation().run()
+    else:
+        pickle.load(data).plot()
 
 
 if __name__ == "__main__":
@@ -250,6 +293,6 @@ if __name__ == "__main__":
         pass
 
     logging.basicConfig(filename=f"out/{datetime.now().isoformat()}.log",
-                        level=logging.DEBUG)
+                        level=logging.INFO)
 
     main()